Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38400440

RESUMO

This research addresses the paramount issue of enhancing safety and health conditions in underground mines through the selection of optimal sensor technologies. A novel hybrid MEREC-CoCoSo system is proposed, integrating the strengths of the MEREC (Method for Eliciting Relative Weights) and Combined Compromise Solution (CoCoSo) methods. The study involves a three-stage framework: criteria and sensor discernment, criteria weight determination using MEREC, and sensor prioritization through the MEREC-CoCoSo framework. Fifteen criteria and ten sensors were identified, and a comprehensive analysis, including MEREC-based weight determination, led to the prioritization of "Ease of Installation" as the most critical criterion. Proximity sensors were identified as the optimal choice, followed by biometric sensors, gas sensors, and temperature and humidity sensors. To validate the effectiveness of the proposed MEREC-CoCoSo model, a rigorous comparison was conducted with established methods, including VIKOR, TOPSIS, TODIM, ELECTRE, COPRAS, EDAS, and TRUST. The comparison encompassed relevant metrics such as accuracy, sensitivity, and specificity, providing a comprehensive understanding of the proposed model's performance in relation to other established methodologies. The outcomes of this comparative analysis consistently demonstrated the superiority of the MEREC-CoCoSo model in accurately selecting the best sensor for ensuring safety and health in underground mining. Notably, the proposed model exhibited higher accuracy rates, increased sensitivity, and improved specificity compared to alternative methods. These results affirm the robustness and reliability of the MEREC-CoCoSo model, establishing it as a state-of-the-art decision-making framework for sensor selection in underground mine safety. The inclusion of these actual results enhances the clarity and credibility of our research, providing valuable insights into the superior performance of the proposed model compared to existing methodologies. The main objective of this research is to develop a robust decision-making framework for optimal sensor selection in underground mines, with a focus on enhancing safety and health conditions. The study seeks to identify and prioritize critical criteria for sensor selection in the context of underground mine safety. The research strives to contribute to the mining industry by offering a structured and effective approach to sensor selection, prioritizing safety and health in underground mining operations.


Assuntos
Mineração , Reprodutibilidade dos Testes , Umidade
2.
Theranostics ; 14(1): 116-132, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164154

RESUMO

Background: Therapeutic interventions such as synthetic drugs and microRNA (miR) modulators have created opportunities for mitigating hepatic ischemia/reperfusion injury (HIRI) by alleviating mitochondrial dysfunction. However, delivering multi-therapeutic ingredients with low toxicity to hepatocytes still lags behind its development. Methods: In this study, we endowed exosomes with delivery function to concentrate on hepatocytes for multidimensionally halting mitochondria dysfunction during HIRI. Concretely, exosomes were reprogrammed with a transmembrane protein CD47, which acted as a "camouflage cloak" to mimic the "don't eat me" mechanism to escape from immune surveillance. Besides, HuR was engineered bridging to the membrane by fusing with CD47 and located in the cytoplasm for miR loading. Results: This strategy successfully delivered dual payloads to hepatocytes and efficiently protected mitochondria by inhibiting the opening of mitochondrial permeability transition pore (mPTP) and upregulating mitochondrial transcription factor A (TFAM), respectively. Conclusions: The reprogramming of exosomes with CD47 and HuR for targeted delivery of CsA and miR inhibitors represents a promising therapeutic strategy for addressing HIRI. This approach shows potential for safe and effective clinical applications in the treatment of HIRI.


Assuntos
Exossomos , MicroRNAs , Traumatismo por Reperfusão , Humanos , Antígeno CD47/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Exossomos/metabolismo , Traumatismo por Reperfusão/metabolismo , Mitocôndrias/metabolismo , MicroRNAs/metabolismo
3.
J Transl Med ; 22(1): 73, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238834

RESUMO

BACKGROUND: The role of mitochondrial dynamics, encompassing fission, fusion, and mitophagy, in cancer progression has been extensively studied. However, the specific impact of mitochondrial dynamics on hepatocellular carcinoma (HCC) is still under investigation. METHODS: In this study, mitochondrial dynamic genes were obtained from the MitoCarta 3.0 database, and gene expression data were collected from The Cancer Genome Atlas (TCGA) database. Based on the expression of these dynamic genes and differentially expressed genes (DEGs), patients were stratified into two clusters. Subsequently, a prognostic model was constructed using univariate COX regression and the least absolute shrinkage and selection operator (LASSO) regression, and the prognostic signature was evaluated. We analyzed the interaction between these model genes and dynamic genes to identify hub genes and reveal mitochondrial status. Furthermore, we assessed immune infiltration, tumor mutational burden (TMB), tumor stemness indices (TSI), and the response to immune checkpoint block (ICB) therapy using the TIDE algorithm and risk scores. Additionally, transmission electron microscopy (TEM), hematoxylin-eosin (H&E) staining, immunohistochemistry (IHC), western blotting (WB), and immunofluorescence (IF) were conducted to afford detailed visualization of the morphology of the mitochondria and the expression patterns of fission-associated proteins. RESULTS: Patients in Cluster 2 exhibited heightened mitochondrial fission and had a worse prognosis. The up-regulated dynamic genes in Cluster 2 were identified as fission genes. GO/KEGG analyses reconfirmed the connection of Cluster 2 to augmented mitochondrial fission activities. Subsequently, a ten-gene prognostic signature based on the differentially expressed genes between the two clusters was generated, with all ten genes being up-regulated in the high-risk group. Moreover, the potential links between these ten signature genes and mitochondrial dynamics were explored, suggesting their involvement in mediating mitochondrial fission through interaction with MTFR2. Further investigation revealed that the high-risk group had an unfavorable prognosis, with a higher mutation frequency of TP53, increased immune checkpoint expression, a higher TIS score, and a lower TIDE score. The mitochondrial imbalance characterized by increased fission and upregulated MTFR2 and DNM1L expression was substantiated in both HCC specimens and cell lines. CONCLUSIONS: In conclusion, we developed a novel MTFR2-related prognostic signature comprising ten mitochondrial dynamics genes. These genes play crucial roles in mitochondrial fission and have the potential to serve as important predictors and therapeutic targets for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Algoritmos , Carcinoma Hepatocelular/genética , Linhagem Celular , Neoplasias Hepáticas/genética , Dinâmica Mitocondrial/genética , Prognóstico
4.
Biomedicines ; 11(6)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37371833

RESUMO

Necroptosis, pro-inflammatory programmed necrosis, has been reported to exert momentous roles in pancreatic cancer (PC). Herein, the objective of this study is to construct a necroptosis-related prognostic model for detecting pancreatic cancer. In this study, the intersection between necroptosis-related genes and differentially expressed genes (DEGs) of pancreatic ductal adenocarcinoma (PDAC) was obtained based on GeneCards database, GEO database (GSE28735 and GSE15471), and verified using The Cancer Genome Atlas (TCGA). Next, a prognostic model with Cox and LASSO regression analysis, and divided the patients into high-risk and low-risk groups. Subsequently, the Kaplan-Meier (KM) survival curve and the receiver operating characteristic (ROC) curves were generated to assess the predictive ability of overall survival (OS) of PC patients. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to predict the potential biofunction and possible mechanical pathways. The EMTome database and an immune analysis were applied to further explore underlying mechanism. Finally, clinical samples of PDAC patients were utilized to verify the expression of model genes via immunohistochemistry (IHC), and the normal human pancreatic ductal cell line, hTERT-HPNE as well as human pancreatic ductal carcinoma cell lines, PANC-1 and PL45, were used to identify the levels of model genes by Western blot (WB) and immunofluorescence (IF) in vitro. The results showed that 13 necroptosis-related DEGs (NRDEGs) were screened based on GEO database, and finally four of five prognostic genes, including KRT7, KRT19, IGF2BP3, CXCL5, were further identified by TCGA to successfully construct a prognostic model. Univariate and multivariate Cox analysis ultimately confirmed that this prognostic model has independent prognostic significance, KM curve suggested that the OS of low-risk group was longer than high-risk group, and the area under receiver (AUC) of ROC for 1, 3, 5 years was 0.733, 0.749 and 0.667, respectively. A GO analysis illustrated that model genes may participate in cell-cell junction, cadherin binding, cell adhesion molecule binding, and neutrophil migration and chemotaxis, while KEGG showed involvement in PI3K-Akt signaling pathway, ECMreceptor interaction, IL-17 signaling pathway, TNF signaling pathway, etc. Moreover, our results showed KRT7 and KRT19 were closely related to EMT markers, and EMTome database manifested that KRT7 and KRT19 are highly expressed in both primary and metastatic pancreatic cancer, declaring that model genes promoted invasion and metastasis potential through EMT. In addition, four model genes were positively correlated with Th2, which has been reported to take part in promoting immune escape, while model genes except CXCL5 were negatively correlated with TFH cells, indicating that model genes may participate in immunity. Additionally, IHC results showed that model genes were higher expressed in PC tissues than that in adjacent tumor tissues, and WB and IF also suggested that model genes were more highly expressed in PANC-1 and PL45 than in hTERT-HPNE. Tracing of a necroptosis-related prognostic model for pancreatic carcinoma reveals its invasion and metastasis potential through EMT and immunity. The construction of this model and the possible mechanism of necroptosis in PDAC was preliminarily explored to provide reliable new biomarkers for the early diagnosis, treatment, and prognosis for pancreatic cancer patients.

6.
Pharmgenomics Pers Med ; 14: 1331-1345, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34703278

RESUMO

BACKGROUND: The H/ACA small nucleolar ribonucleoprotein (snoRNP) gene family, including GAR1 ribonucleoprotein (GAR1), NHP2 ribonucleoprotein (NHP2), NOP10 ribonucleoprotein (NOP10), and dyskerin pseudouridine synthase 1 (DKC1), play important roles in ribosome biogenesis. However, the potential clinical value of the H/ACA snoRNP gene family in hepatocellular carcinoma (HCC) has not yet been reported. METHODS: Bioinformation databases were used to analyze the expression and roles of the H/ACA snoRNP gene family in HCC. Survival analysis, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes enrichment pathway (KEGG) analyses were performed using R software. Tumor Immune Estimation Resource (TIMER) was used to analyze the correlation between the expression of the H/ACA snoRNP gene family and immune infiltration in HCC. Finally, immunohistochemistry and Western blotting were performed to verify the protein expression of the H/ACA snoRNP gene family in HCC tissues and adjacent tissues. RESULTS: The expression of the H/ACA snoRNP gene family was significantly increased in HCC samples compared to normal tissues, and the area under the curve (AUC) of GAR1, NHP2, NOP10, and DKC1 was 0.898, 0.962, 0.884, and 0.911, respectively. Increased expression of the H/ACA snoRNP gene family was associated with poor prognosis in HCC patients (Hazard Ratio, HR = 1.44 [1.02-2.04], 1.70 [1.20-2.40], 1.53 [1.09-2.17], and 1.43 [1.02-2.03], respectively; log-rank P = 0.036, 0.003, 0.014, 0.039, respectively). GO and KEGG analyses showed that co-expressed genes were primarily enriched in ribosome biogenesis. In addition, upregulated expression of H/ACA snoRNP gene family was related to the infiltration of various immune cells and multiple T cell exhaustion markers in HCC patients. Immunohistochemical analysis and Western blotting showed that the protein expression of H/ACA snoRNP gene family was higher in HCC tissues than in adjacent tissues of clinical samples. CONCLUSION: H/ACA snoRNP gene family expression was higher in HCC tissues than in normal or adjacent tissues and was highly associated with poor prognosis of HCC patients and, therefore, has the potential to serve as diagnostic and prognostic biomarkers for HCC.

7.
Materials (Basel) ; 14(12)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205499

RESUMO

The use of cement emulsified asphalt mortar (CA mortar) in the track structure of high-speed speed railways has been gaining considerations by many researchers due to its coupled merits of the strength of cement as well as the flexibility of asphalt material. The asphalt to cement ratio (A/C) and the compatibility among constituent materials are crucial to the properties of CA mortar. To improve the performance properties and application of CA mortar, it is imperative to have a broad understanding of the composition mechanisms and compatibility between constituent materials. This paper summarizes interesting research outcomes related to the composition and properties of CA mortar. The consumption of water by cement promotes the breakdown of emulsified asphalt, likewise, the adsorption of asphalt droplets on the surface of cement grains retards the hydration process of cement. An appropriate A/C is required for the cement hydration rate to match the speed of demulsification of asphalt emulsion. Depending on the type and properties for which the CA mortar is designed to possess, the A/C ranges from 0.2 to 0.6 for type 1 (CAM I), and 0.6 to 1.2 for type 2 (CAM II). This paper also discusses measures taken to improve performance properties, compatibility, the interaction between constituent materials of CA mortar, and the use of additives as a partial replacement of cement in CA mortar production. The current review also suggests areas of interest for future research studies. This paper is useful to those who aim to understand or study the composition mechanisms and performance properties of CA mortar.

8.
Mol Cell Proteomics ; 19(12): 1997-2015, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32883800

RESUMO

AAA+ ATPases constitute a large family of proteins that are involved in a plethora of cellular processes including DNA disassembly, protein degradation and protein complex disassembly. They typically form a hexametric ring-shaped structure with six subunits in a (pseudo) 6-fold symmetry. In a subset of AAA+ ATPases that facilitate protein unfolding and degradation, six subunits cooperate to translocate protein substrates through a central pore in the ring. The number and type of nucleotides in an AAA+ ATPase hexamer is inherently linked to the mechanism that underlies cooperation among subunits and couples ATP hydrolysis with substrate translocation. We conducted a native MS study of a monodispersed form of PAN, an archaeal proteasome AAA+ ATPase, to determine the number of nucleotides bound to each hexamer of the WT protein. We utilized ADP and its analogs (TNP-ADP and mant-ADP), and a nonhydrolyzable ATP analog (AMP-PNP) to study nucleotide site occupancy within the PAN hexamer in ADP- and ATP-binding states, respectively. Throughout all experiments we used a Walker A mutant (PANK217A) that is impaired in nucleotide binding as an internal standard to mitigate the effects of residual solvation on mass measurement accuracy and to serve as a reference protein to control for nonspecific nucleotide binding. This approach led to the unambiguous finding that a WT PAN hexamer carried - from expression host - six tightly bound ADP molecules that could be exchanged for ADP and ATP analogs. Although the Walker A mutant did not bind ADP analogs, it did bind AMP-PNP, albeit at multiple stoichiometries. We observed variable levels of hexamer dissociation and an appearance of multimeric species with the over-charged molecular ion distributions across repeated experiments. We posit that these phenomena originated during ESI process at the final stages of ESI droplet evolution.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Espectrometria de Massas , Nucleotídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Multimerização Proteica , Difosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/metabolismo , Proteínas Arqueais/metabolismo , Ligantes , Methanocaldococcus , Proteínas Mutantes/metabolismo , Ligação Proteica , Subunidades Proteicas/metabolismo , Espectrometria de Massas por Ionização por Electrospray
9.
Materials (Basel) ; 13(8)2020 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-32290602

RESUMO

In order to improve the stability of air bubbles in fresh concrete, it is of great significance to have a better understanding of the mechanisms and main influencing factors of bubble stability. In the present review, the formation and collapse process of air bubbles in fresh concrete are essentially detailed; and the advances of major influencing factors of bubble stability are summarized. The results show that the surface tension of air-liquid interface exerts a huge impact on bubble stability by reducing surface free energy and Plateau drainage, as well as increasing the Gibbs surface elasticity. However, surface tension may not be the only determinant of bubble stability. Both the strength of bubble film and the diffusion rate of air through the membrane may also dominate bubble stability. The application of nano-silica is a current trend and plays a key role in ameliorating bubble stability. The foam stability could be increased by 6 times when the mass fraction of nano-particle reached 1.5%.

10.
Materials (Basel) ; 13(7)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260063

RESUMO

In order to solve the problems of the sudden loss of fluidity and low expansion rate of CAM I (cement asphalt mortar type I) in a construction site with high environmental temperature, this paper studies the effect of temperature on the fluidity, expansion ratio and pH value of CAM I. The mechanism of action was analyzed by IR (infrared spectrometry), SEM (scanning electron microscopy) and other test methods. The results showed that a high temperature accelerates aluminate formation in cement paste. Aluminate adsorbs emulsifiers leading to demulsification of emulsified asphalt, and wrapped on the surface of cement particles, this causes CAM I to lose its fluidity rapidly. The aluminum powder gasification reaction is inhibited, resulting in an abnormal change in the expansion ratio. Based on findings, the application of an appropriate amount of superplasticizers can effectively improve the workability and expansion characteristics of CAM I at a high temperature.

11.
Mol Cell Proteomics ; 15(6): 2186-202, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27099342

RESUMO

Identifying protein-protein interactions (PPIs) at an acceptable false discovery rate (FDR) is challenging. Previously we identified several hundred PPIs from affinity purification - mass spectrometry (AP-MS) data for the bacteria Escherichia coli and Desulfovibrio vulgaris These two interactomes have lower FDRs than any of the nine interactomes proposed previously for bacteria and are more enriched in PPIs validated by other data than the nine earlier interactomes. To more thoroughly determine the accuracy of ours or other interactomes and to discover further PPIs de novo, here we present a quantitative tagless method that employs iTRAQ MS to measure the copurification of endogenous proteins through orthogonal chromatography steps. 5273 fractions from a four-step fractionation of a D. vulgaris protein extract were assayed, resulting in the detection of 1242 proteins. Protein partners from our D. vulgaris and E. coli AP-MS interactomes copurify as frequently as pairs belonging to three benchmark data sets of well-characterized PPIs. In contrast, the protein pairs from the nine other bacterial interactomes copurify two- to 20-fold less often. We also identify 200 high confidence D. vulgaris PPIs based on tagless copurification and colocalization in the genome. These PPIs are as strongly validated by other data as our AP-MS interactomes and overlap with our AP-MS interactome for D.vulgaris within 3% of expectation, once FDRs and false negative rates are taken into account. Finally, we reanalyzed data from two quantitative tagless screens of human cell extracts. We estimate that the novel PPIs reported in these studies have an FDR of at least 85% and find that less than 7% of the novel PPIs identified in each screen overlap. Our results establish that a quantitative tagless method can be used to validate and identify PPIs, but that such data must be analyzed carefully to minimize the FDR.


Assuntos
Proteínas de Bactérias/metabolismo , Desulfovibrio vulgaris/metabolismo , Escherichia coli/metabolismo , Proteômica/métodos , Cromatografia de Afinidade/métodos , Espectrometria de Massas/métodos , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas
12.
Mol Cell Proteomics ; 15(5): 1539-55, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26873250

RESUMO

Numerous affinity purification-mass spectrometry (AP-MS) and yeast two-hybrid screens have each defined thousands of pairwise protein-protein interactions (PPIs), most of which are between functionally unrelated proteins. The accuracy of these networks, however, is under debate. Here, we present an AP-MS survey of the bacterium Desulfovibrio vulgaris together with a critical reanalysis of nine published bacterial yeast two-hybrid and AP-MS screens. We have identified 459 high confidence PPIs from D. vulgaris and 391 from Escherichia coli Compared with the nine published interactomes, our two networks are smaller, are much less highly connected, and have significantly lower false discovery rates. In addition, our interactomes are much more enriched in protein pairs that are encoded in the same operon, have similar functions, and are reproducibly detected in other physical interaction assays than the pairs reported in prior studies. Our work establishes more stringent benchmarks for the properties of protein interactomes and suggests that bona fide PPIs much more frequently involve protein partners that are annotated with similar functions or that can be validated in independent assays than earlier studies suggested.


Assuntos
Proteínas de Bactérias/metabolismo , Biologia Computacional/métodos , Desulfovibrio vulgaris/metabolismo , Escherichia coli/metabolismo , Cromatografia de Afinidade , Bases de Dados de Proteínas , Espectrometria de Massas , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteômica/métodos , Técnicas do Sistema de Duplo-Híbrido
13.
Front Physiol ; 5: 268, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25104939

RESUMO

The hardest tooth enamel tissue develops from a soft layer of protein-rich matrix, predominated by amelogenin that is secreted by epithelial ameloblasts in the secretory stage of tooth enamel development. During enamel formation, a well-controlled progressive removal of matrix proteins by resident proteases, Matrix metalloproteinase 20 (MMP20), and kallikrein 4 (KLK4), will provide space for the apatite crystals to grow. To better understand the role of amelogenin degradation in enamel biomineralization, the present study was conducted to investigate how the adsorption of amelogenin to hydroxyapatite (HAP) crystals affects its degradation by enamel proteinases, MMP20 and KLK4. Equal quantities of amelogenins confirmed by protein assays before digestions, either adsorbed to HAP or in solution, were incubated with MMP20 or KLK4. The digested samples collected at different time points were analyzed by spectrophotometry, SDS-PAGE, high performance liquid chromatography (HPLC), and LC-MALDI MS/MS. We found that majority of amelogenin adsorbed on HAP was released into the surrounding solution by enzymatic processing (88% for MMP20 and 98% for KLK4). The results show that as compared with amelogenin in solution, the HAP-bound amelogenin was hydrolyzed by both MMP20 and KLK4 at significantly higher rates. Using LC-MALDI MS/MS, more accessible cleavage sites and hydrolytic fragments from MMP20/KLK4 digestion were identified for the amelogenin adsorbed on HAP crystals as compared to the amelogenin in solution. These results suggest that the adsorption of amelogenin to HAP results in their preferential and selective degradation and removal from HAP by MMP20 and KLK4 in vitro. Based on these findings, a new degradation model related to enamel crystal growth is proposed.

14.
J Infect Dis ; 210(7): 1062-6, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24719472

RESUMO

Semen harbors amyloids that enhance human immunodeficiency virus type 1 (HIV-1) infection. We set out to identify factors that bind these amyloids and to determine whether these factors modulate amyloid-mediated HIV-enhancing activity. Using biochemical and mass spectrometric approaches, we identified fibronectin as a consistent interaction partner. Although monomeric fibronectin did not enhance HIV infection, it synergistically increased the infectivity enhancement activity of the amyloids. Depletion of fibronectin decreased the enhancing activity of semen, suggesting that interfering with the binding interface between fibronectin and the amyloids could be an approach to developing a novel class of microbicides targeting the viral-enhancing activity of semen.


Assuntos
Amiloide/metabolismo , Fibronectinas/metabolismo , HIV-1/fisiologia , Sêmen/química , Sêmen/virologia , Internalização do Vírus , Humanos , Ligação Proteica
15.
J Virol ; 88(13): 7221-34, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24741080

RESUMO

UNLABELLED: Semen enhances HIV infection in vitro, but how long it retains this activity has not been carefully examined. Immediately postejaculation, semen exists as a semisolid coagulum, which then converts to a more liquid form in a process termed liquefaction. We demonstrate that early during liquefaction, semen exhibits maximal HIV-enhancing activity that gradually declines upon further incubation. The decline in HIV-enhancing activity parallels the degradation of peptide fragments derived from the semenogelins (SEMs), the major components of the coagulum that are cleaved in a site-specific and progressive manner upon initiation of liquefaction. Because amyloid fibrils generated from SEM fragments were recently demonstrated to enhance HIV infection, we set out to determine whether any of the liquefaction-generated SEM fragments associate with the presence of HIV-enhancing activity. We identify SEM1 from amino acids 86 to 107 [SEM1(86-107)] to be a short, cationic, amyloidogenic SEM peptide that is generated early in the process of liquefaction but that, conversely, is lost during prolonged liquefaction due to the activity of serine proteases. Synthetic SEM1(86-107) amyloids directly bind HIV-1 virions and are sufficient to enhance HIV infection of permissive cells. Furthermore, endogenous seminal levels of SEM1(86-107) correlate with donor-dependent variations in viral enhancement activity, and antibodies generated against SEM1(86-107) recognize endogenous amyloids in human semen. The amyloidogenic potential of SEM1(86-107) and its virus-enhancing properties are conserved among great apes, suggesting an evolutionarily conserved function. These studies identify SEM1(86-107) to be a key, HIV-enhancing amyloid species in human semen and underscore the dynamic nature of semen's HIV-enhancing activity. IMPORTANCE: Semen, the most common vehicle for HIV transmission, enhances HIV infection in vitro, but how long it retains this activity has not been investigated. Semen naturally undergoes physiological changes over time, whereby it converts from a gel-like consistency to a more liquid form. This process, termed liquefaction, is characterized at the molecular level by site-specific and progressive cleavage of SEMs, the major components of the coagulum, by seminal proteases. We demonstrate that the HIV-enhancing activity of semen gradually decreases over the course of extended liquefaction and identify a naturally occurring semenogelin-derived fragment, SEM1(86-107), whose levels correlate with virus-enhancing activity over the course of liquefaction. SEM1(86-107) amyloids are naturally present in semen, and synthetic SEM1(86-107) fibrils bind virions and are sufficient to enhance HIV infection. Therefore, by characterizing dynamic changes in the HIV-enhancing activity of semen during extended liquefaction, we identified SEM1(86-107) to be a key virus-enhancing component of human semen.


Assuntos
Amiloide/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Fragmentos de Peptídeos/metabolismo , Sêmen/metabolismo , Proteínas Secretadas pela Vesícula Seminal/metabolismo , Sequência de Aminoácidos , Amiloide/química , Western Blotting , Humanos , Dados de Sequência Molecular , Filogenia , Proteólise , Sêmen/química , Homologia de Sequência de Aminoácidos , Internalização do Vírus
16.
Methods Enzymol ; 532: 327-41, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24188774

RESUMO

Tooth enamel is the hardest tissue in vertebrate animals. Consisting of millions of carbonated hydroxyapatite crystals, this highly mineralized tissue develops from a protein matrix in which amelogenin is the predominant component. The enamel matrix proteins are eventually and completely degraded and removed by proteinases to form mineral-enriched tooth enamel. Identification of the apatite-binding motifs in amelogenin is critical for understanding the amelogenin-crystal interactions and amelogenin-proteinases interactions during tooth enamel biomineralization. A stepwise strategy is introduced to kinetically and quantitatively identify the crystal-binding motifs in amelogenin, including a peptide screening assay, a competitive adsorption assay, and a kinetic-binding assay using amelogenin and gene-engineered amelogenin mutants. A modified enzyme-linked immunosorbent assay on crystal surfaces is also applied to compare binding amounts of amelogenin and its mutants on different planes of apatite crystals. We describe the detailed protocols for these assays and provide the considerations for these experiments in this chapter.


Assuntos
Amelogenina/química , Hidroxiapatitas/química , Adsorção , Motivos de Aminoácidos , Animais , Ligação Competitiva , Cristalização , Esmalte Dentário/química , Ensaio de Imunoadsorção Enzimática , Humanos , Cinética , Calcificação de Dente
17.
Curr Biol ; 23(4): 339-44, 2013 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-23375896

RESUMO

Ciliary compartmentalization plays pivotal roles in ciliogenesis and in various signaling pathways. Here we describe a structure at the ciliary base that appears to have all the features required for compartmentalization and which we thus call the "ciliary partitioning system" (CPS). This complex consists of the terminal plate, which serves as a cytosolic "ciliary pore complex" (CPC), and a membrane region well suited to serve as a diffusion barrier. The CPC is a plate-shaped structure containing nine pores through which the microtubule doublets of the basal body pass. Each pore expands from the doublet B-tubule into an opening well suited for the passage of intraflagellar transport particles. The membrane diffusion barrier encompasses an extended region of detergent-resistant periciliary membrane (ciliary pocket) and a ring complex that connects the CPC to the membrane. Proteomics analysis shows involvement of the ciliary pocket in vesicle trafficking, suggesting that this region plays an active role in membrane transport. The CPC and the ring together form a complete partition defining the ciliary boundary.


Assuntos
Axonema/ultraestrutura , Cílios/fisiologia , Cílios/ultraestrutura , Tetrahymena/fisiologia , Transporte Biológico , Microtúbulos/fisiologia , Microtúbulos/ultraestrutura
18.
Biochim Biophys Acta ; 1830(3): 2600-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23201201

RESUMO

BACKGROUND: Enamel synthesis is a highly dynamic process characterized by simultaneity of matrix secretion, assembly and processing during apatite mineralization. MMP-20 is the first protease to hydrolyze amelogenin, resulting in specific cleavage products that self-assemble into nanostructures at specific mineral compositions and pH. In this investigation, enzyme kinetics of MMP-20 proteolysis of recombinant full-length human amelogenin (rH174) under different mineral compositions is elucidated. METHODS: Recombinant amelogenin was cleaved by MMP-20 under various physicochemical conditions and the products were analyzed by SDS-PAGE and MALDI-TOF MS. RESULTS: It was observed that mineral ions largely affect cleavage pattern, and enzyme kinetics of rH174 hydrolysis. Out of the five selected mineral ion compositions, MMP-20 was most efficient at high calcium concentration, whereas it was slowest at high phosphate, and at high calcium and phosphate concentrations. In most of the compositions, N- and C-termini were cleaved rapidly at several places but the central region of amelogenin was protected up to some extent in solutions with high calcium and phosphate contents. CONCLUSION: These in vitro studies showed that the chemistry of the protein solutions can significantly alter the processing of amelogenin by MMP-20, which may have significant effects in vivo matrix assembly and subsequent calcium phosphate mineralization. GENERAL SIGNIFICANCE: This study elaborates the possibilities of the processing of the organic matrix into mineralized tissue during enamel development.


Assuntos
Amelogenina/química , Apatitas/química , Cálcio/química , Metaloproteinase 20 da Matriz/química , Fragmentos de Peptídeos/química , Amelogênese/fisiologia , Amelogenina/metabolismo , Sequência de Aminoácidos , Esmalte Dentário/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Humanos , Cinética , Dados de Sequência Molecular , Fragmentos de Peptídeos/análise , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Soluções , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
19.
J Proteome Res ; 11(12): 5720-35, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23098413

RESUMO

Cell membranes represent the "front line" of cellular defense and the interface between a cell and its environment. To determine the range of proteins and protein complexes that are present in the cell membranes of a target organism, we have utilized a "tagless" process for the system-wide isolation and identification of native membrane protein complexes. As an initial subject for study, we have chosen the Gram-negative sulfate-reducing bacterium Desulfovibrio vulgaris. With this tagless methodology, we have identified about two-thirds of the outer membrane- associated proteins anticipated. Approximately three-fourths of these appear to form homomeric complexes. Statistical and machine-learning methods used to analyze data compiled over multiple experiments revealed networks of additional protein-protein interactions providing insight into heteromeric contacts made between proteins across this region of the cell. Taken together, these results establish a D. vulgaris outer membrane protein data set that will be essential for the detection and characterization of environment-driven changes in the outer membrane proteome and in the modeling of stress response pathways. The workflow utilized here should be effective for the global characterization of membrane protein complexes in a wide range of organisms.


Assuntos
Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Desulfovibrio vulgaris/química , Ensaios de Triagem em Larga Escala/métodos , Proteínas de Membrana/isolamento & purificação , Complexos Multiproteicos/isolamento & purificação , Proteínas da Membrana Bacteriana Externa/química , Membrana Celular/química , Cromatografia por Troca Iônica , Desulfovibrio vulgaris/enzimologia , Detergentes/química , Eletroforese em Gel de Poliacrilamida , Escherichia coli/química , Espectrometria de Massas , Proteínas de Membrana/química , Peso Molecular , Complexos Multiproteicos/química , Periplasma/química , Periplasma/enzimologia , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Proteoma/química , Proteômica/métodos , Homologia de Sequência de Aminoácidos , Solubilidade
20.
Cells Tissues Organs ; 196(2): 151-60, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22301468

RESUMO

Amelogenins containing exons 8 and 9 are alternatively spliced variants of amelogenin. Some amelogenin spliced variants have been found to promote pulp regeneration following pulp exposure. The function of the amelogenin spliced variants with the exons 8 and 9 remains unknown. In this study, we synthesized recombinant leucine rich amelogenin peptide (LRAP, A-4), LRAP plus exons 8 and 9 peptide (LRAP 8, 9) or exons 8 and 9 peptide (P89), to determine their effects on odontoblasts. In vivo analyses were completed following the insertion of agarose beads containing LRAP or LRAP 8, 9 into exposed cavity preparations of rat molars. After 8, 15 or 30 days' exposure, the pulp tissues were analyzed for changes in histomorphometry and cell proliferation by PCNA stainings. In vitro analyses included the effects of the addition of the recombinant proteins or peptide on cell proliferation, differentiation and adhesion of postnatal human dental pulp cells (DPCs). These studies showed that in vivo LRAP 8, 9 enhanced the reparative dentin formation as compared to LRAP. In vitro LRAP 8, 9 promoted DPC proliferation and differentiation to a greater extent than LRAP. These data suggest that amelogenin exons 8 and 9 may be useful in amelogenin-mediated pulp repair.


Assuntos
Amelogenina/genética , Proteínas do Esmalte Dentário/genética , Polpa Dentária/fisiologia , Éxons , Odontoblastos/metabolismo , Animais , Processos de Crescimento Celular/genética , Polpa Dentária/metabolismo , Polpa Dentária/patologia , Modelos Animais de Doenças , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...